CHUYÊN MỤC
ĐỒNG TÂM
LỊCH ÂM DƯƠNG
LIÊN KẾT WEBSITE
Thông tin khoa học cơ bản » THƯ VIỆN TOTHA  » Chi tiết
 
ĐẠO CỦA VẬT LÝ tt 4
...Vật lý hiện đại trong thế kỷ 20 tìm kiếm nguồn gốc khởi thủy của vật chất, cố tìm ra những "hạt cơ bản" cuối cùng tạoA nên nguyên tử. Thế nhưng, khi đến cánh cửa cuối cùng mở ra để thấy bộ mặt thật của vật chất, hình như không phải do những hạt cứng chắc tạo thành nữa, mà nó chỉ là dạng xuất hiện của một thực tại khác...

 

Chương 15  
ĐIỆU MÚA VŨ TRỤ

Việc nghiên cứu thế giới hạ nguyên tử trong thế kỷ 20 đã phát hiện tính chất động nội tại của vật chất. Nó cho thấy, thành phần của nguyên tử, các hạt, đều là những cơ cấu động; chúng không hiện hữu như những đơn vị độc lập, mà là phần tử không tách rời của một thể thống nhất, với nhiều mối tương quan.

Những liên hệ này biểu diễn một dòng năng lượng không ngừng nghỉ, năng lượng đó biểu hiện dưới sự trao đổi hạt; một mối liên hệ động , mà trong đó các hạt cứ được tạo thành và phân hủy vô tận qua những cấu trúc năng lượng. Các hạt tương tác sinh ra những cấu trúc ổn định, chính các cấu trúc đó xây dựng nên thế giới vật chất, rồi thế giới vật chất cũng không nằm yên, nó vận động tuần hoàn. Toàn bộ vũ trụ cứ thế mãi mãi lao vào trong hoạt động và vận hành vô tận, trong điệu múa vĩ mô của năng lượng.

Vũ điệu này bao gồm thiên hình vạn trạng những cấu trúc, nhưng lạ lùng thay chúng cho phép ta phân chia chúng dưới vài loại hình nhất định. Sự nghiên cứu các hạt hạ nguyên tử và tương tác của chúng cho phép phát hiện ra một trật tự lớn. Tất cả mọi nguyên tử, tức là tất cả mọi dạng hình của vật chất của thế giới chúng ta chỉ gồm có ba hạt mang khối lượng cấu thành: proton, neutron, electron. Một hạt hạt thứ tư, photon thì phi khối lượng và là đơn vị của các tia bức xạ điện từ. Proton, photon và electron đều là những hạt ổn định, tức là chúng có thể sống vô tận, nếu chúng không rơi vào một cuộc va chạm có thể tiêu diệt chúng. Còn neutron thì ngược lại, nó có thể thình lình tự phân hủy. Sự tự phân hủy này được gọi phân hủy beta (b) và là tiến trình cơ bản của một loại hoạt động phóng xạ nhất định. Trong tiến trình đó, neutron tự biến thành proton, đồng thời sinh ra thêm một electron và thêm một loại hạt phi khối lượng mới, mang tên neutrino. Như proton và electron,neutrino cũng ổn định. Nó thường được biểu diễn bằng chữ Hy Lạp u; cách viết của sự tự phân hủy beta này là :

N > p + e-+ v

Sự phân hủy của neutron thành proton trong nguyên tử của một chất phóng xạ làm cho nguyên tử này chuyển hóa thành một nguyên tử hoàn toàn khác. Trong quá trình này lại có thêm electron được sinh ra nên nó phát ra bức xạ mạnh, bức xạ này được áp dụng rộng rãi trong các ngành sinh vật, y khoa và công nghiệp. Còn neutrino ngược lại, mặc dù chúng cũng được sinh ra với một số lưọng như thế, nhưng rất khó phát hiện ra chúng, vì chúng không có khối lượng, chẳng có điện tích.

Như ta đã biết, cứ mỗi hạt lại có một đối hạt cùng khối lượng nhưng điện tích ngược lại. Đối hạt của photon cũng chính là nó; đối hạt của electron là positron; thế nên ta óc đối hạt antiproton; antineutron và antineutrino. Hạt neutrino sinh ra trong phân hủy beta vì không có khối lượng, nói chính xác, không phải là neutrino mà la antineutrino (`v), cho nên ta phải viết tiến trình này là:

N >p + e- + `v

Đến nay, những hạt được nhắc tới chỉ là một phần nhỏ của các hạt được biết tới. Tất cả mọi hạt khác đều bất ổn định và tự phân hủy biến thành hạt khác trong thời gian rất ngắn, trong số đó một phần lại phân hủy tiếp cho đến khi hình thành một nhóm những hạt ổn định. Việc nghiên cứu các hạt bất ổn định rất tốn công, vì mỗi hạt của chúng phải được sinh ra trong các quá trình va chạm, trong đó ta cần đến các thiết bị gia tốc hạt khổng lồ, buồng đo và các thiết bị phức tạp khác nhằm phát hiện hạt.

Phần lớn các hạt bất ổn đều tồn tại hết sức ngắn ngủi, theo khái niệm con người: nhỏ hơn một phần triệu giây đồng hồ. Thế nhưng ta cần xem đời sống đó trong mối tương quan với độ lớn của chúng, độ lớn đó cũng hết sức nhỏ bé. Nếu nhìn như thế, thì nhiều hạt đó sống tương đối lâu dài và một phần triệu giây đồng hồ trong thế giới hạt thật ra là một khoảng thời gian rất lớn. Trong một giây, con người có thể đi một đoạn dài gấp vài lần cơ thể họ. Thì đó xem như là thời gian mà một hạt đi một đoạn dài gấp vài lần độ lớn của nó: ta có thể xem đơn vị thời gian đó là giây đồng hồ hạt.

Để đi xuyên qua một nhân nguyên tử có độ lớn trung bình, một hạt phải cần khoảng mười giây đồng hồ hạt đó, trong đó hạt đi với vận tốc gần bằng vận tốc ánh sáng, đó là vận tốc khi hạt bị va chạm. Trong một số lượng lớn các hạt phi ổn định thì có khoảng trên hai chục hạt, những hạt này đủ sức xuyên qua nhiều nhân nguyên tử trước khi chúng tự phân hủy. Khoảng cách này như thế dài gấp vài trăm ngàn lần độ lớn của chúng và tương ứng khoảng thời gian vài trăm giờ đồng hồ hạt. Những hạt này được ghi trong bảng trang sau đây, chung với các hạt ổn định đã được nhắc đến. Phần lớn các hạt phi ổn định ghi trong bảng này đều đi được gần cả cen-ti-mét, thậm chí vài cen-ti-mét trước khi chúng tự phân hủy, và những hạt sống lâu nhất, một phần triệu giây, chúng đi cả vài trăm mét trước khi tự phân hủy, so sánh với độ lớn của chúng thì đó là một đoạn đường khổng lồ.

Tất cả những hạt được biết khác thì thuộc về loại cộng hưởng, trong chương sau sẽ được nói kỹ hơn. Đời sống của chúng ngắn hơn nhiều, chỉ vài giây hạt sau là chúng đã phân hủy, chúng chỉ đi được một đoạn dài gấp vài lần độ lớn của chúng. Điều đó có nghĩa là người ta không thể thấy chúng trong buồng đo và chỉ suy đoán gián tiếp sự hiện diện của chúng. Trong buồng đo người ta chỉ thấy vết của các hạt được ghi trong bảng sau đây.

Các hạt ổn định và hạt có đời sống tương đối dài  
Tên Ký hiệu  
  Hạt đối hạt  
  Photon g  
Lepton   neutrino V  
Lepton   Electron e-  
Lepton   Myon m-  
Hadron Menson   Pion p+   po  p-  
Hadron Menson   Kaon K+ Ko Ko K-  
Hadron Menson Eta   h  
Hadron Baryon   Proton p `p  
Hadron Baryon   Neutron n `n  
Hadron Baryon   Lambda  
Hadron Baryon   Sigma S+ So S-  
Hadron Baryon   Cascaden  
Hadron Baryon   Omega 

Bảng này trình bày 13 loại hạt khác nhau, trong đó nhiều hạt xuất hiện dưới những dạng điện tích khác nhau. Thí dụ những pion có thể có điện tích dương (p+) hoặc điện tích âm (p-) hay điện tích trung hoà (p0). Có hai loại neutrino, một loại chỉ xuất hiện khi tương tác với electron (v), loại kia chỉ tương tác với myon (vm). Các đối hạt cũng được trình bày, có ba loại hạt (g, p0, h) cũng chíng là đối hạt của mình.Các hạt được xếp thứ tự theo khối lượng càng lúc càng tăng của chúng: photon và neutrino là phi khối lượng, electron có khối lượng bé nhất; các myon, pion và kaon nặng hơn electron khoảng vài trăm lần, các hạt khác nặng hơn từ một đến ba ngàn lần.

Tất cả những hạt này có thể được sinh ra hay phân huỷ trong quá trình va chạm. Mỗi hạt đều có thể được hoán đổi với tính cách là hạt giả và nhờ thế nó tham gia vào sự tương tác giữa những hạt khác. 

Điều này sinh ra một số lượng lớn tương tác giữa các hạt và may thay, mặc dù ta chưa biết nguyên do thế nào, các tương tác đó được xếp thành bốn loại có độ tương tác khác nhau rõ rệt:

-tương tác mạnh  
-tương tác điện từ  
-tương tác yếu và 
-tương tác trọng trường 

Trong số bốn loại này đối với chúng ta, tương tác điện từ và trọng trường là gần gũi nhất vì chúng nghiệm được trong đời sống hàng ngày. Tương tác trọng trường tác động lên các hạt nhưng chúng quá nhỏ nên không thể chứng minh bằng thí nghiệm được. Thế nhưng trong thế giới vĩ mô thì vô số các hạt làm nên các vật thể, số lượng đó cộng tương tác trọng trường lại với nhau và sinh ra lực trọng trường, điều hành cả vũ trụ! Tương tác điện từ cũng sinh ra giữa các hạt chứa điện tích. Chúng là nguồn gốc sinh ra các tiến trình hóa học và sinh ra các cấu trúc nguyên tử cũng như phân tử. Tương tác mạnh là lực giữ chặt proton và neutron trong nhân lại với nhau.Chúng chính là lực hạt nhân, là năng lực mạnh nhất vượt xa các lực khác trong thiên nhiên. Sức hút điện từ của nhân nguyên tử lên electron chỉ bằng mười đơn vị (Electro-Volt), trong lúc đó thì lực hạt nhân buộc chặt proton và neutron với một năng lực khoảng mười triệu đơn vị đó.

Những nucleon không phải là những hạt duy nhất bị tương tác mạnh tác động. Đại đa số các hạt đều là những hạt có tương tác mạnh cả. Trong các hạt ngày nay được biết tới, chỉ có năm hạt (và những đối hạt của chúng) không tham dự vào tương tác mạnh. Đó là photon và các lepton được ghi ở đầu bảng. Vì thế, tất cả các hạt được chia thành hai nhóm: lepton và hadron, loại sau có tương tác mạnh. Các hadron lại được chia làm thành menson và baryon, chúng khác nhau nhiều cách, thí dụ tất cả baryon đều có đối hạt riêng, trong lúc menson có thể đồng nhất với đối hạt của mình.

Các lepton là những hạt tham dự vào loại tương tác thứ tư, tương tác yếu. Loại tương tác này yếu và có biên độ nhỏ đến nỗi chúng không ràng buộc gì với nhau được cả, trong lúc ba loại tương tác kia sản sinh ra lực liên kết. Tương tác mạnh thì giữ nhân nguyên tử lại với nhau, tương tác điện từ giữ phân tử và nguyên tử với nhau, tương tác trọng trường giữ hành tinh, thiên thể và thiên hà với nhau. Tương tác yếu chỉ thể hiện trong vài dạng va chạm của hạt và trong sự phân hủy của chúng, như đã nói trong sự phân hủy beta.

Tất cả tương tác giữa các hadron được sinh ra bởi sự hoán chuyển của các hadron khác. Sự chuyển hoá các hạt mang khối lượng này là nguyên nhân tại sao các tác động tương tác chỉ có một biên độ nhỏ. Chúng chỉ vươn xa khoảng được vài lần độ lớn của chúng và vì thế mà không bao giờ xây dựng được một sức mạnh vĩ mô. Vì thế mà chúng ta không chứng nghiệm được loại tương tác mạnh trong đời sống hàng ngày. Ngược lại tương tác điện từ được sinh ra từ sự hoán chuyển của các photon phi khối lượng và biên độ của chúng nhờ thế mà không bị hạn chế, đó là lý do mà ta gặp năng lực điện và từ trong thế giới thông thường. Tương tác trọng trường cũng được cho là do một loại hạt phi khối lượng sinh ra, gọi là graviton. Nhưng chúng quá yếu nên tới nay vẫn chưa quan sát được graviton, mặc dù không có lý do chính đáng nào có thể nghi ngờ được sự tồn tại của nó.

Cuối cùng loại tương tác yếu có một biên độ hết sức ngắn - ngắn hơn nhiều so với biên độ của tương tác mạnh - vì thế người ta cho rằng chúng sinh ra do sự hoán chuyển của các hạt rất nặng. Các giả định đó xem như hiện hữu dưới ba loại với tên là W+, W - và Z. Người ta đoán rằng, chúng đóng một vai trò như photon trong tương tác điện từ, chỉ khác là chúng có khối lượng lớn. Sự song hành này là cơ sở của một phát triển gần đây về một loại thuyết trường lượng tử có tên là thuyết Gauge và có khả năng mang lại một lý thuyết nhất quán về trường, nó hợp nhất được sự tương tác điện từ và tương tác yếu.

Trong nhiều quá trình va chạm của vật lý năng lượng cao thì sự tác động của tương tác điện từ, tương tác mạnh và tương tác yếu sinh ra một hậu quả phức tạp với nhiều tiến trình sau đó. Những hạt bị va chạm ban đầu thường bị phân hủy, rồi nhiều hạt mới được sinh ra, chúng lại bị va chạm hay tự phân hủy thành những hạt ổn định, có khi qua nhiều lần khác nhau. Hình sau cho thấy hình chụp trong buồng đo, trong đó có cả một loạt những tiến trình sinh thành và phân hủy. Đó là một sự minh họa đầy thuyết phục về tính biến dịch của vật chất trên bình diện hạt và cho thấy sự tuôn trào của năng lựợng, trong đó những cơ cấu hay hạt khác nhau được hình thành và phân hủy.

Hình trên: một tiến trình phức tạp của sự va chạm hạt và hủy diệt: một pion mang điện tích âm (p-) đến từ bên trái và va chạm với một proton - tức là với nhân của một nguyên tử hydrogen - đã nằm chờ sẵn trong buồng đo; hai hạt này đều bị hủy diệt và sinh ra một neutron (n) với thêm hai kaon (K và K+). Neutron bay xa mà không để lại dấu vết gì, K đụng một proton khác trong buồng đo, hai hạt này hủy diệt lẫn nhau và sinh ra một lambda (l) và một photon (g). Thế nhưng cả hai hạt này đều không thấy được, vì l sau đó đã phân hủy nhanh chóng thành một proton và một p -, cả hai hạt này để lại dấu vết. Ta có thể thấy trong hình khoảng cách ngắn từ lúc sản sinh l và lúc phân hủy. Còn K + hình thành trong sự va chạm ban đầu bay được một đoạn và phân hủy thành ba pion.

Trong tiến trình sau đây, sự hình thành của vật chất thật sự gây ấn tượng mạnh, khi một photon (g) phi khối lượng mang năng lượng cao, vô hình trong buồng đo bỗng nổ ra, biến thành một cặp hạt mang điện tích (một electron và một positron), hai hạt này bay theo hai đường cong ngày càng xa nhau. Hình sau đây cho thấy một thí dụ tuyệt đẹp của tiến trình này, trong đó hai cặp này được sinh ra.

Một loạt tiến trình, trong đó hai cặp được hình thành: một K phân hủy thành một p -  và hai photon (g), rồi từ mỗi g lại sinh ra một cặp electron-positron, positron (e +) bay về phía phải, electron (e -) bay lên phía trái

Năng lượng ban đầu của tiến trình va chạm càng cao thì càng nhiều hạt được sinh ra. Hình bên cho thấy sự hình thành của tám pion trong một sự va chạm giữa một đối hạt antiproton và một proton và hình kế tiếp cho thấy một trường hợp cực hiếm: sự hình thành của mười sáu hạt chỉ trong một sự va chạm duy nhất giữa một pion và một proton.

Sự hình thành tám pion trong tiến trình va chạm giữa một đối hạt antiproton (`p) và một proton (proton nằm chờ sẵn trong buồng đo, do đó không thấy đường đi).

Tất cả những tiến trình va chạm này đều được cố ý thực hiện trong phòng thí nghiệm với những máy móc khổng lồ, trong đó hạt được gia tốc để đạt năng lượng cần thiết. Trên mặt đất, phần lớn các tiến trình tự nhiên không đủ năng lượng để sinh hạt. Thế nhưng trong không gian, tình hình hoàn toàn khác hẳn. Các hạt hạ nguyên tử xuất hiện tại trung tâm thiên thể với số lượng lớn, trong đó tiến trình va chạm tương tự như trong phòng thí nghiệm với gia tốc cao, chúng diễn ra một cách liên tục trong thiên nhiên. Trong vài thiên thể, những tiến trình này sinh ra những bức xạ điện từ cực mạnh dưới dạng sóng radio, sóng ánh sáng hay quang tuyến X, chúng giúp các nhà thiên văn học có thêm các nguồn thông tin về vũ trụ. Như thế không gian giữa các thiên hà là đầy những bức xạ điện từ có tần số khác nhau, tức là đầy những photon với cường độ năng lượng khác nhau. Thế nhưng chúng không phải là những hạt duy nhất bay trong không gian. Cùng với photon, những bức xạ vũ trụ này cũng còn chứa những hạt khối lượng các loại, nguồn gốc của chúng không được rõ. Phần lớn chúng là proton, một số trong đó mang năng lượng cực lớn, hơn xa năng lượng của những thiết bị gia tốc mạnh nhất.

Khi những bức xạ vũ trụ mang năng lượng cực mạnh này đụng khí quyển trái đất thì chúng sinh ra va chạm với nhân của các phân tử không khí và sinh ra nhiều hạt phụ, các hạt phụ này hoặc bị phân hủy hoặc va chạm tiếp, lại sinh ra các hạt khác, lại phân hủy hay va chạm, cứ thế cho tới lúc các hạt cuối cùng chạm mặt đất. Theo cách thế này mà một proton duy nhất, khi đã đến vùng khí quyển mặt đất, có thể gây nên cả một loạt tiến trình, trong đó nguồn động năng ban đầu của nó biến thành một đám mưa chứa nhiều hạt khác nhau, các hạt đó dần dần được hấp thụ khi chúng đi vào không khí với nhiều cuộc va chạm. Thế nên, hiện tượng của những tiến trình va chạm được quan sát trong phòng thí nghiệm cao năng lượng thực tế xảy ra liên tục trong tự nhiên, chỉ khác là trong bầu khí quyển, chúng xảy ra mãnh liệt hơn nhiều, đó là một dòng năng lượng liên tục, dòng đó đi suốt một quá trình nhảy múa tuần hoàn của hình thành và phân hủy của một số lớn những hạt. Dưới đây là hình ảnh hoành tráng của vũ điệu năng lượng đó, tình cờ được ghi lại trong buồng chụp của Trung tâm Nghiên cứu Hạt nhân của châu Âu CERN, xem như sự phát kiến bất ngờ về vũ trụ trong một cuộc thí nghiệm.

Không phải tất cả các tiến trình của hình thành và phân hủy trong thế giới hạt đều có thể ghi lại trong buồng đo. Có những sự hình thành và phân hủy của các hạt giả, chúng được hoán chuyển trong sự tương tác các hạt, nhưng chúng hiện diện quá ngắn ngủi nên không thể quan sát. Hãy giả định sự hình thành hai hạt pion trong tiến trình va chạm của một proton và đối hạt antiproton. Biểu đồ không - thời gian của biến cố này được vẽ như sau:

Người ta thấy rằng, trong biểu đồ này vạch vũ trụ của proton (p) và antiproton (`p), chúng va chạm nhau trong một điểm của không gian - thời gian, phá hủy lẫn nhau và sinh ra hai pion (p + và p -). Thế nhưng biểu đồ này chưa biểu diễn đầy đủ hình ảnh thật sự. Sự tương tác giữa proton và antiproton có thể xem là sự hoán chuyển của một neutron giả, như biểu đồ sau đây cho thấy:

Tương tự như thế, quá trình bên, trong đó một proton và antiproton va chạm sinh ra bốn pion, có thể được diễn giải là một sự hoán chuyển phức tạp của ba hạt giả, ba hạt này gồm có hai neutron và một proton.

Hình này chỉ có tính chất tượng trưng và không chỉ đúng các góc của đường đi của hạt. Ta cần chú ý proton nguyên thủy nằm đợi trong buồng đo, nó không hiện lên trong hình chụp, nhưng trong biểu đồ không - thời gian nó lại được biểu diễn vì nó vận động trong thời gian.

Thí dụ này cho thấy những hình chụp trong buồng đo thật ra chỉ là một hình ảnh thô sơ về sự tương tác giữa các hạt. Tiến trình thật sự chính là một loạt hoán chuyển phức tạp của những hạt. Tình hình thực sự phức tạp hơn, nếu người ta nhớ rằng, mỗi hạt tham gia vào quá trình tương tác bản thân đó cũng liên tục phát ra những hạt giả và hấp thụ chúng lại. Thí dụ một proton luôn luôn phát ra một pion trung hòa p 0; có khi nó lại phát ra một p + và tự biến thành neutron n, sau đó lại hấp thụ p + rồi trở thành proton. Trong trường hợp đó thì biểu đồ Feyman của poton phải được thay thế bằng những biểu đồ như hình sau.

Trong những tiến trình giả này thì một hạt nguyên thủy có thể biến mất hoàn toàn trong một thời gian ngắn, như trong tiến trình (b) cho thấy. Lấy thí dụ khác, một pion âm p-, có thể tự biến thành một neutron (n) và một đối hạt antiproton (`p), hai hạt giả này tự hủy diệt lẫn nhau để trở thành pion nguyên thủy:

Cần nhớ rằng tất cả những tiến trình này đều tuân thủ quy luật của thuyết lượng tử, tức là tuân thủ phép xác suất, nó chỉ nói lên khuynh hướng có thể xảy ra chứ không nói chúng nhất định sẽ xảy ra. Với một xác suất nhất định, mỗi một proton chỉ có khả năng hiện hữu với dạng proton và p0(a), hay neutron và p+ (b) và với những dạng khác. Những thí dụ nêu trên chỉ là những tiến trình giả đơn giản nhất. Nhiều tiến trình phức tạp hơn hẳn sẽ xảy ra khi những hạt giả sinh ra những hạt giả khác và do đó mà tạo nên cả một mạng lưới những tiến trình tương tác giả. Trong tác phẩm The World of Elementary Paticles (Thế giới các hạt cơ bản) Kenneth Ford dựng nên một thí dụ phức tạp của một mạng lưới gồm sự hình thành và phân hủy của 11 hạt giả và ghi chú thêm: “Biểu đồ cho thấy một loạt những biến cố, nhìn xem thì thấy hỗn độn, nhưng hoàn toàn thực tế. Thỉnh thoảng mỗi proton chuyển động đúng như trong vũ điệu hình thành và phân hủy này”.

Ford không phải là nhà vật lý duy nhất sử dụng cách nói như “sự nhảy múa của hình thành và phân hủy” hay nhảy múa năng lượng. Hình ảnh về nhịp điệu và nhảy múa sẽ hiện đến khi ta hình dung về dòng năng lượng chảy qua các cấu trúc, những cấu trúc sinh ra thế giới của các hạt cơ bản. Nền vật lý hiện đại đã chỉ rõ, rằng vận động và nhịp điệu là tính chất cơ bản của vật chất; rằng mọi vật chất, dù trên mặt đất hay trong không gian, đều tham gia vào một vũ điệu liên tục của vũ trụ.

Các xác suất của chúng cũng không hề tuỳ tiện, chúng bị hạn chế bởi một số qui luật mà trong chương 16 sẽ bàn tới.

Nhà đạo học phương Đông có một quan điểm động về vũ trụ, tương tự như vật lý hiện đại và vì thế không có gì đáng ngạc nhiên khi họ cũng dùng hình ảnh của vũ điệu. Trong tác phẩm Tibetan Journey (Thời gian sống tại Tây Tạng), Alexandra David Neel kể lại một thí dụ đẹp về hình ảnh đó của tiết điệu và nhảy múa, trong đó bà kể về một vị Lạt-ma, người tự nhận là “đạo sư âm thanh” đã kể cho bà nghe quan niệm của mình về vật chất như sau:

Mọi sự đều do nguyên tử tập hợp lại, những nguyên tử đó nhảy múa và qua sự vận động của chúng mà sinh ra âm thanh. Nếu nhịp điệu của điệu múa thay đổi thì âm thanh phát ra cũng thay đổi… mỗi một nguyên tử là một bài ca bất tận và mỗi một âm thanh hình thành trong mỗi chớp mắt bằng những dạng hình cô đọng và tinh tế. 

Sự tương đồng của quan điểm này với nền vật lý hiện đại tỏ rõ khi ta nhớ rằng, âm thanh là một sóng có tần số nhất định, tần số đó thay đổi theo âm thanh cao thấp và nhớ rằng, hạt cơ bản, khái niệm hiện đại của nguyên tử, chẳng qua cũng chỉ là sóng mà tần số tỉ lệ với năng lượng của chúng. Theo thuyết lượng tử thì quả thật mỗi hạt cơ bản ca bài ca bất tận của nó và sản sinh ra những cơ cấu năng lượng có tiết điệu (những hạt giả) trong dạng hình cô đọng và tinh tế.

Hình tượng của về vũ điệu vũ trụ được diễn tả sâu sắc và đẹp đẽ nhất trong Ấn Độ giáo với hình ảnh của thần Shiva nhảy múa. Một trong những hiện thân của Shiva - một trong những vị thần Ấn Độ xưa cũ nhất và cũng được ngưỡng mộ nhất - là vị hoàng đế vũ công. Trong niềm tin của Ấn Độ giáo thì tất cả đời sống chỉ là một phần trong tiến trình tuần hoàn của sinh thành và hoại diệt, của tử vong và tái sinh, và điệu nhảy của Shiva biểu diễn tiết điệu vô cùng này của sống chết, nó tiếp diễn trong vô tận đại kiếp. Hãy nghe lời của Anada Coomaraswamy:

Trong đêm tối của Brahman thì thế giới tự nhiên bất động và không thể nhảy múa, cho đến ngày Shiva muốn: từ báo thân của mình, ngài đứng dậy và gửi cho vật chất đang im lìm những sóng nhảy múa hầm hập gồm toàn âm thanh thức tỉnh và xem kìa! Vật chất sống dậy, nhảy múa và biến thành hào quang nằm quanh Ngài. Trong lúc nhảy múa Ngài giữ vững tính thiên hình vạn trạng của hiện tượng. Vẫn tiếp tục nhảy múa, theo thời gian, Ngài dùng lửa hủy diệt mọi sắc danh và tạo lại sự tĩnh lặng. Đây là thi ca mà cũng chính là khoa học.

Vũ điệu của Shiva không những biểu diễn sự tuần hoàn sinh diệt của vũ trụ mà cũng là nhịp điệu hàng ngày của sống chết, đối với đạo học Ấn Độ thì nhịp điệu đó là cơ sở của mọi hiện hữu. Đồng thời Shiva nhắc nhở chúng ta hiện tượng muôn vẻ đó trong thế gian chỉ là do ảnh - nó không cơ bản, nó chỉ là ảo giác và liên tục biến đổi. Ngài tạo ra nó rồi hủy diệt nó trong dòng nhảy múa bất tận của mình, như Heinrich Zimmer mô tả:

Vũ điệu ào ạt và cao quý của Ngài gia tăng thêm cho sự ảo giác về vũ trụ. Tay chân quay cuồng và cơ thể uốn lượn của Ngài kích thích sự sinh thành và hoại diệt liên tục của vũ trụ, trong đó cái tử cân bằng với cái sinh và sự hủy diệt luôn luôn chấm dứt sự sinh thành.

Nghệ sĩ Ấn Độ của thế kỷ thứ 10, thứ 12 đã diễn tả thần Shiva nhảy múa tuyệt đẹp bằng tượng đồng với hình ảnh bốn tay, với sự cân bằng tuyệt hảo nhưng lại trình bày được tính chất động của nhịp điệu và tính nhất thể của đời sống. Những ý nghĩa khác nhau của điệu múa được diễn tả bằng những chi tiết bức tượng qua một biểu tượng phức tạp. Tay phải bên trái phía trên của thần cầm trống, đại diện cho âm thanh sinh thành nguyên thủy, tay trái phía trên là ngọn lửa, yếu tố của hủy diệt. Sự cân bằng của hai tay này đại diện cho sự cân bằng động giữa sinh thành và hoại diệt trong thế giới, được khắc hoạ thêm nhờ khuôn mặt tĩnh lặng và ánh sáng ngời của vũ công giữa hai tay, trong đó có sự đối cực của thành hoại đã bị vượt lên và chuyển hóa. Tay phải thứ hai bắt ấn vô úy và biểu diễn tính bảo toàn, cứu nguy và an lạc; trong lúc tay trái kia chỉ xuống chân đang nhấc lên, tượng trưng cho sự giải thoát khỏi ảo giác. Vị thần nhảy múa trên xác quỷ, quỷ tượng tưng cho sự vô minh của con người, nó phải được đối trá để đạt sự giải thoát.

Vũ điệu Shiva, nói như Coomaraswamy, là “hình ảnh rõ nhất của hoạt động thượng đế, mà bất cứ nghệ thuất hay tôn giáo nào muốn ca tụng”. Vì Thượng đế ở đây là hóa thân của Brahman nên hoạt động của Ngài chính là muôn hình vạn trạng những xuất hiện của Brahman trong thế giới. Vũ điệu của Shiva chính là vũ trụ đang nhảy múa, là nguồn năng lượng bất xuyên chảy qua vô cùng những cấu trúc đang xen kẽ vào nhau.

Nền vật lý hiện đại đã chỉ rõ, rằng nhip điệu sinh thành và biến hoại không không những chỉ là bốn mùa xuân hạ thu đông và sự sống chết của sinh vật, mà còn trong bản chất đích thực của vật chất vô sinh. Theo thuyết trường lượng tử thì tất cả mọi tương tác của mọi nguyên tố cấu thành vật chất diễn ra thông qua sự hình thành và hấp thụ các hạt giả. Hơn thế nữa, điệu múa thành hoại chính là cơ sở hiện hữu của vật chất, vì tất cả các hạt vật chất cơ bản thông qua sự sản sinh và tái hấp thụ các hạt giả mà tự tương tác với chính mình. Thế nên, nền vật lý hiện đại đã khám phá rằng, mỗi hạt hạ nguyên tử không những chỉ có một sự nhảy múa năng lượng, mà là một sự nhảy múa, bản thân nó là một tiến trình đầy sức sống của sinh thành và hoại diệt.

Cấu trúc của vũ điệu này là khía cạnh chủ yếu và quy định tính chất mỗi hạt. Thí dụ năng lượng tham gia khi phát ra hay hấp thụ hạt giả là tương ứng với khối lượng tương tự của hạt tương tác. Vì thế những hạt khác nhau có vũ điệu khác nhau, năng lượng và khối lượng khác nhau. Cuối cùng các hạt giả không những là chủ yếu trong sự tương tác hạt và tính chất của chúng, mà còn bị không gian trống rỗng sinh ra và huỷ diệt. Cho nên không phải chỉ vật chất thôi mà cả không gian trống rỗng cũng tham gia vũ điệu, hình thành và phân huỷ các cấu trúc năng lượng, kéo dài vô tận.

Theo huyền thoại Ấn Độ giáo nói về một tiến trình liên tục của thành hoại của toàn vũ trụ, thì tiến trình này là cơ sở của mọi hiện hữu và của mọi hiện tượng tự nhiên. Cách đây hàng trăm năm, nghệ sỹ Ấn Độ đã diễn tả Shiva nhảy múa bằng tượng đồng. Ngày nay thì nhà vật lý đã dùng những phương tiện hiện đại nhất để diễn tả những cấu trúc của nhịp điệu vũ trụ đó. Những hình ảnh ghi lại sự tương tác hạt trong buồng đo, những hình minh chứng tiết điệu thành hoại liên tục của vũ trụ, là những hình ảnh thấy được của điệu múa Shiva, những hình ảnh đó có thể đặt ngang hàng với vẻ đẹp và ý nghĩa sâu kín với các tác phẩm của Ấn Độ. Như thế, những biểu tượng của điệu múa vũ trụ này đã thống nhất huyền thoại cũ xưa, nghệ thuật tôn giáo vật lý hiện đại lại vào một mối. Thực tế đó là thi ca mà cũng chính là khoa học. 

 

Chương 16 
CẤU TRÚC ĐỐI XỨNG QUARK- MỘT CÔNG ÁN MỚI

Thế giới hạ nguyên tử là một thế giới của nhịp điệu,vận hành và biến dịch liên tục. Thế nhưng nó không tùy tiện và hỗn loạn mà luôn giữ một dạng nhất định và rõ ràng.  Trước hết là tất cả các hạt của một loại đều giống nhau, chúng có một khối lượng như nhau, điện tích như nhau và các tính chất đặc trưng khác cũng giống nhau. Hơn thế nữa, các hạt mang điện tích đều có đúng điện tích của một electron (hay có dấu ngược lại), hoặc có điện tích gấp đôi của electron. Điều này cũng đúng với các đại lượng mang tính chất khác, những trị số đó không tùy tiện mà được giới hạn trong một số lượng có hạn. Qua đó ta có thể xếp loại các hạt trong một số ít loại nhất định hay những họ. Điều này dẫn đến câu hỏi, thế thì những cấu trúc nhất định này làm sao có thể sinh thành trong một thế giới động và liên tục thay đổi được.

Sự xuất hiện các dạng nhất định trong cấu trúc của vật chất thật ra không phải là hiện tượng mới, người ta đã thấy nó trong thế giới nguyên tử. Cũng như các hạt hạ nguyên tử, các nguyên tử của cùng một loại thì hoàn toàn giống nhau và những nguyên tử khác nhau của các yếu tố hóa tính được xếp loại trong những nhóm của bảng phân loại tuần hoàn. Ngày nay ta hiểu rõ sự phân loại này, nó dựa trên số lượng của proton và neutron trong nhân nguyên tử và trên sự phân bố của electron trong các vân đạo. Tính chất sóng của electron qui định các vân đạo đó cách xa bao nhiêu và độ quay của một electron trên một vân đạo cho sẵn. Tính chất sóng đó hạn chế các đại lượng này trong vài con số nhất định, chúng liên hệ với sự dao động nhất định của sóng electron. Thế nên trong cấu trúc nguyên tử chỉ có một số mẫu hình nhất định, chúng được qui định bởi một nhóm số lượng tử, mẫu hình đó thể hiện bởi các dạng dao động của sóng electron trong các vân đạo. Những dao động này quyết định các tình trạng tương tự của một nguyên tử và vì thế mà hai nguyên tử hoàn toàn giống nhau nếu chúng cùng ở trong trạng thái cơ bản hay trạng thái kích thích như nhau.

Cấu trúc của các hạt cơ bản cho thấy sự tương đồng lớn với cấu trúc của nguyên tử, thí dụ phần lớn các hạt đều quay quanh trục của mình như một con vụ. Độ quay nội tại Spin của nó được hạn chế trên các đại lượng nhất định, chúng được diễn tả bằng những số nguyên của một đơn vị gốc. Thí dụ spin của baryon có thể là, 3/2, 5/20…, trong lúc đó thì spin của menson là 0, 1, 2… Điều này nhắc ta nhớ nhiều đến các độ quay của các electron trên vân đạo của chúng, các độ quay đó cũng được hạn chế bởi các trị số được biểu diễn bằng số nguyên.

Tính tương tự với các cấu trúc nguyên tử càng rõ hơn với thực tế là, các hạt có tương tác mạnh hay hadron có thể được xếp họ chung với nhau mà các thành viên có tính chất như nhau, không kể khối lượng và spin của chúng. Các thành viên cao của những họ này là những hạt cơ bản sống hết sức ngắn ngủi, ta gọi chúng là resonance và được phát hiện rất nhiều trong vài chục năm qua. Khối lượng spin của các resonance tăng dần theo một cách có qui định trong các họ và xem ra sẽ tiến tới vô cực. Tính chất có qui luật này làm ta nhớ đến các mức độ của những tình trạng kích thích các nguyên tử và làm cho nhà vật lý tiến đến cách nhìn, là các thành viên cao (khối lượng nặng) của hadron không hề là những hạt gì khác, mà chẳng qua chính là thành viên có khối lượng thấp nhưng ở dạng bị kích thích. Cũng như một nguyên tử, một hadron có thể lưu trú trong những dạng bị kích thích, và sống rất ngắn ngủi, dạng kích thích đó được biểu diễn bằng spin cao hơn hay năng lượng (chính là khối lượng ) cao hơn.

Sự tương tự giữa những tình trạng lượng tử của nguyên tử và những hạt hadron cho thấy, bản thân hadron cũng có thể là những vật thể được tạo thành bởi cấu trúc nội tại, cấu trúc đó có thể bị kích thích, tức là chúng hấp thụ năng lượng để làm thành một cấu trúc khác. Tuy nhiên hiện nay ta chưa hiểu được các cấu trúc đó hình thành như thế nào. Trong vật lý nguyên tử, ta có thể lý giải chúng dựa trên tính chất và sự tương tác với các hạt cấu thành nguyên tử (proton, neutron, và electron), nhưng trong nền vật lý hạt thì chưa lý giải được. Các cấu trúc tìm thấy được trong thế giới hạt chỉ được xác định và phân loại một cách thuần tịnh thực nghiệm chứ chưa được suy luận từ các chi tiết của cấu trúc hạt.

Khó khăn chủ yếu mà nhà vật lý hạt gặp phải là khái niệm của vật thể do các phần tử khác tạo thành khái niệm đó không còn ứng dụng được trong hạt hạ nguyên tử nữa. Khả năng duy nhất để tìm phần tử tạo thành của một hạt cơ bản là phá vỡ nó bằng tiến trình va chạm với năng lượng cao. Thế nhưng các hạt vỡ ra đó lại không hề nhỏ hơn hạt cơ bản ban đầu. Thí dụ hai hạt proton va chạm với nhau với vận tốc lớn sẽ sinh ra một loạt các mảnh, thế nhưng không có mảnh nào có thể được gọi là mảnh vỡ của proton. Các mảnh đó luôn luôn đều là hadron toàn vẹn, chúng được sinh ra từ động năng và khối lượng của các proton ban đầu. Vì thế mà việc tách một hạt để tìm phần tử cấu thành của nó là điều rất không rõ ràng, vì chúng tùy thuộc nơi năng lượng tham gia trong các tiến trình va chạm. Nơi đây ta có tình trạng của tương đối, trong đó một cấu trúc năng lượng biến mất, một cấu trúc khác sinh ra và khái niệm tĩnh tại về vật thể do nhiều phần tử hợp thành không còn áp dụng được nữa trong những cấu trúc đó. Cấu trúc của một hạt chỉ có thể hiểu theo nghĩa động: đó là tiến trình và sự tương tác.

Khi hạt bị vỡ thành những mảnh trong tiến trình va chạm, điều đó có qui định nhất định và vì các mảnh lại là các hạt cùng loại nên ta có thể dùng các qui luật đó để mô tả những tính chất nhất định được quan sát trong thế giới hạt. Trong những năm sáu mươi, khi phần lớn các hạt ngày nay ta biết đến được phát hiện và các họ của các hạt bắt đầu xuất hiện thì phần lớn các nhà vật lý đều tìm hiểu các tính chất nói trên, số ít khác lại tìm hiểu vấn đề khó khăn do nguyên nhân động của cấu trúc hạt sinh ra. Với cách làm như thế họ rất thành công.

Khái niệm của đối xứng đóng một vai trò quan trọng trong những nghiên cứu này. Nhà vật lý tổng quát hóa nó lên và cho nó một ý nghĩa trừu tượng và qua đó mà khái niệm này trở thành hữu dụng khi phân loại các hạt. Trong đời sống hàng ngày, sự đối xứng trục là trường hợp thông thường nhất của đối xứng. Một dạng hình là đối xứng trục khi ta có thể vẽ một đường thẳng và chia hình ra hai phần như nhau.

Loại đối xứng cao cấp hơn là dạng hình, trong đó có nhiều trục đối xứng như hình dưới đây của một biểu tượng Phật giáo. Tuy nhiên sự phản chiều không phải là cách duy nhất liên quan tới đối xứng. Một dạng hình cũng có thể gọi là đối xứng sau khi quay một góc nhất định, nó sẽ trở về vị trí cũ. Thí dụ đồ hình âm dương của Trung quốc dựa trên loại đối xứng quay này.

Trong vật lý hạt, tính đối xứng, ngoài loại phản chiếu và quay, còn có mối liên hệ với nhiều phương pháp khác và chúng không những chỉ xảy ra trong không gian bình thường (và trong thời gian) mà cả trong không gian toán học trừu tượng. Chúng được áp dụng cho hạt và nhóm các hạt , và vì tính chất hạt không thể tách rời khỏi sự tương tác lẫn nhau giữa chúng, nên tính đối xứng cũng có thể áp dụng cho sự tương tác, tức là cho những tiến trình có hạt tham dự. Các tính đối xứng này hữu ích, vì lẽ chúng liên hệ chặt chẽ với qui luật bảo toàn. Một khi một tiến trình trong phạm vi hạt có một sự đối xứng thì nơi đó có một đại lượng đo được, đại lượng đó được bảo toàn, tức là một đại lượng bất biến trong suốt quá trình. Những đại lượng này cho ta những yếu tố bất biến trong quá trình chuyển biến phức tạp của hạt vật chất hạ nguyên tử và chúng phù hợp một cách lý tưởng cho việc mô tả sự tương tác các hạt. Một số đại lượng thì bất biến xuyên qua mọi tương tác, một số khác chỉ bất biến qua một số tương tác, thế nên mỗi tiến trình tương tác đều được liên hệ với một nhóm đại lượng bảo toàn nhất định. Do đó tính đối xứng hiện ra trong tính chất của hạt với tính cách là qui luật bảo toàn trong liên hệ tương tác của chúng. Trong ngôn ngữ của nhà vật lý thì hai khái niệm này hoán chuyển được. Trong một số trường hợp, ta gọi là sự đối xứng của tiến trình, trường hợp khác ta gọi là luật bảo toàn, tùy theo lúc nào hữu ích hơn.

Có bốn luật bảo toàn cơ bản, chúng được quan sát trong tất cả mọi tiến trình. Trong số đó thì đã có ba loại liên hệ với điều kiện đối xứng đơn giản trong không gian thông thường và thời gian thông thường. 

Tất cả mọi tương tác giữa hạt đều đối xứng trong không gian - chúng giống hệt nhau, dù chúng xảy ra ở London hay New York, về mặt thời gian thì chúng cũng đối xứng, tức là chúng xảy ra bất kỳ, dù ngày thứ hai hay ngày thứ tư trong tuần. Tính đối xứng đầu tiên liên hệ với sự bảo toàn năng lượng. Điều đó có nghĩa là toàn bộ xung lực của các hạt tham gia vào một quá trình tương tác và toàn bộ năng lượng của chúng (kể cả khối lượng) không thay đổi trước và sau tiến trình. Tính đối xứng cơ bản thứ ba nói về định hướng trong không gian. Thí dụ trong một tiến trình va chạm thì bất kỳ, dù các hạt va chạm nhau có chuyển động theo trục tung hay hoành. Kết quả của tính đối xứng này là tổng trị số của xung lượng quay (kể cả spin của các hạt) được bảo toàn trong một tiến trình. Cuối cùng là sự bảo toàn của điện tích. Điều này liên hệ với một điều kiện đối xứng phức tạp, nhưng nếu phát biểu như tính bảo toàn thì nó rất đơn giản, đó là tổng số điện tích của mọi hạt trong một tương tác được bảo toàn. Ngoài ra còn có vài luật bảo toàn khác nữa, chúng được phát biểu bằng tính đối xứng trong không gian toán học trừu tượng như trường hợp của bảo toàn điện tích. Đến nay ta biết, một vài luật trong đó có giá trị cho tất cả mọi tương tác, một số khác chỉ có giá tị trong một số tương tác (thí dụ chỉ đúng cho tương tác yếu). Những đại lượng bảo toàn liên hệ có thể được gọi là điện tích ảo của hạt. Vì chúng là những số nguyên (± 1, ± 2…) hay có số chia đôi (± 1/2, ± 3/2, ± 5/2…), nên người ta gọi nó là số lượng tử, tương tự như số lượng tử trong vật lý nguyên tử. Mỗi hạt như thế được chỉ định bởi một nhóm số lượng, nhóm số này cùng với khối lượng của hạt xác định toàn bộ tính chất của hạt.

Thí dụ hadron có những trị số rõ rệt “Isospin” và “Hypercharge” hai trị số lượng tử, chúng không thay đổi trong các tương tác mạnh. khi tám menson của bảng trình bày trong chương trước được xếp theo hai trị số lượng tử này, chúng tạo ra một cấu trúc có hình bát giác cân đối, được gọi là “Menson octet”. Hình này cho thấy một sự đối xứng rõ rệt, thí dụ, những hạt và đối hạt giữ các vị trí đối nghịch trong hình bát giác, hai hạt ở trung tâm lại chính là đối hạt của bản thân mình.

Tám hạt baryon nhẹ nhất cũng tạo nên cấu trúc như thế, nó được gọi là “Baryon octet”. Thế nhưng lần này, các đối hạt không còn được chứa đựng trong hình bát giác, mà chúng tạo nên một “Đối octet” có dạng như vậy.

Các baryon còn lại trong bảng các hạt, các omega thì thuộc về cấu trúc khác mang tên là “Baryon decuplet”, đứng chung với chín resonance.

Tất cả các hạt nằm trong một cấu trúc đối xứng nhất định đều có những trị số lượng tử như nhau, chỉ trừ isospin và hypercharge là những số cho chúng các vị trí khác nhau trong cấu trúc. Thí dụ, tất cả mọi menson trong đó octet đều có spin bằng không (tức chúng không quay gì cả); những baryon trong octet thì có spin bằng 1/2 và các baryon trong decuplet có spin bằng 3/2.

Thế nên, các trị số lượng tử vốn được sử dụng để xếp hạt trong họ của chúng, tạo nên những cấu trúc đối xứng rõ ràng, chúng cũng chỉ định vị trí của các hạt riêng lẻ trong mỗi cấu trúc đồng thời cũng phân loại các tương tác khác nhau của hạt đúng theo luật bảo toàn. Nhờ thế mà hai tính chất liên hệ giữa đối xứng và bảo toàn được xem là hết sức hữu ích nhằm trình bày có tính qui luật trong thế giới hạt.

Điều đáng ngạc nhiên là phần lớn các qui luật này lại được diễn tả một cách rất đơn giản, nếu ta giả định rằng tất cả hadron được tạo bởi một số ít những đơn vị, đơn vị đó hiện nay chưa phát hiện được. 

Những đơn vị (hay hạt) đó được Murray Gell-Mann gọi bằng một cái tên giả tưởng là “Quark”, là người đã lấy những dòng của James Joyce trong tác phẩm Finnergarn’s Wake, khi ông giả định chúng hiện hữu. Gell-Mann thành công trong việc suy ra một loạt các cấu trúc hadron, như các octet hay decuplet nói trên, bằng cách cho những trị số lượng tử phù hợp gắn vào ba hạt quark và ba đối hạt antiquark, rồi ông biết để những viên gạch đó ở những vị trí tương quan với nhau để tạo nên baryon và menson, trong đó các trị số lượng tử của chúng chỉ do các trị số của các hạt quark cộng lại. Với nghĩa này thì baryon được gọi gồm có ba quark, có ba đối hạt antiquark và menson gồm một quark và một antiquark.

Tính đơn giản và hữu dụng của mô hình này thì thật đáng kinh ngạc, thế nhưng nó sẽ mang lại khó khăn trầm trọng nếu quark thật sự được xem là thành phần vật chất của hadron. Tới nay, chưa hadron nào được phá vỡ mà thành ra các quark cả, mặc dù ta bắn phá chúng với các nguồn năng lượng lớn nhất có thể có, điều đó có nghĩa là các quark phải được giữ chặt với nhau bằng những lực liên kết cực mạnh. Theo hiểu biết hiện nay của chúng ta về hạt và tương tác của chúng thì những lực này phải bao gồm luôn cả những hạt khác và như thế quark cũng phải có những cấu trúc, cũng như tất cả các hạt có tương tác mạnh khác. 

Thế mà mô hình quark chủ yếu gồm các điểm, phi cơ cấu. Vì sự khó khăn cơ bản này, tới nay không thể phát biểu mô hình quark dưới dạng động để phù hợp với đối xứng và các lực liên kết.

Về mặt thực nghiệm, trong những thập niên qua người ta có những cuộc săn lùng kiếm quark quyết liệt nhưng không thành công. Nếu các quark thật sự hiện hữu thì nó phải dễ thấy vì mô hình Gell-Mann cho chúng những tính chất rất bất thường, như điện tích bằng 1/3 và 2/3 điện tích electron, điều không đâu có trong thế giới hạt. Tới nay người ta không quan sát hạt nào có tính chất đó mặc dù có những nỗ lực rất lớn. Vì thực nghiệm không phát hiện ra chúng, cộng thêm những phản đối lý thuyết về thực tại của chúng, tất cả những điều đó làm sự hiện hữu của quark rất đáng nghi ngờ.

Mặt khác, mô hình quark vẫn rất thành công nếu tính thêm những qui luật được phát hiện trong thế giới hạt, mặc dù mô hình đó không còn được sử dụng một cách đơn giản nữa. Trong mô hình Gell-Mann nguyên thủy, tất cả hadron có thể được xây dựng bằng ba loại quark và ba đối hạt antiquark. Nhưng trong thời gian qua, nhà vật lý giả định rằng có thêm những hạt khác để đáp ứng nhiều dạng khác nhau của cấu hadron. Ba hạt quark nguyên thủy được tạm đặt tên là u, d và s, viết tắt của up, down và strange. Sự mở rộng đầu tiên của mô hình quark trên toàn bộ thông tin có được của hạt, là đòi mỗi quark phải xuất hiện trong ba cách khác nhau, hay ba màu. Từ màu được sử dụng nơi đây một cách tùy tiện, không liên hệ gì với màu sắc bình thường. Dựa trên mô hình quark có màu, baryon gồm có ba quark có màu khác nhau, trong lúc đó thì menson gồm có một quark và một đối hạt cùng một màu.

Việc sử dụng các màu đã nâng số lượng của quark lên chín(ba màu của ba loại u, d, s), và trong thời gian gần đây người ta giả định có thêm một quark, nó cũng xuất hiện trong ba màu. Với khuynh hướng ưa đặt tên giả tưởng của nhà vật lý, hạt quark mới này mang tên c, viết tắt của “charm”. Điều này mang tổng số các hạt lên mười hai, gồm có bốn loại, mỗi loại xuất hiện trong ba màu. Để phân biệt các loại quark với các màu khác nhau, nhà vật lý đưa từ vị và ngày nay người ta nói về những quark có màu và vị khác nhau.

Các qui luật nói trên được mô tả bằng mười hai quark này một cách hùng hồn. Không còn nghi ngờ nữa, hadron cho thấy một sự đối xứng quark. Mặc dù hiểu biết đến nay của chúng ta về hạt và sự tương tác của chúng loại bỏ sự hiện diện một hạt quark vật chất, hadron vẫn thường có tính chất hầu như nó gồm có những phần tử điểm tạo thành. Tính chất nghịch lý này của mô hình quark làm ta nhớ đến những ngày đầu tiên của vật lý nguyên tử khi những mâu thuẫn kỳ lạ đã dẫn nhà vật lý đến sự bừng tỉnh lớn lao để hiểu được nguyên tử. Những hạt quark có tất cả tính chất của một công án mới, mà ngày nay đến phiên nó, có thể dẫn đến một sự bừng tỉnh để hiểu hạt hạ nguyên tử. Thực tế là sự bừng tỉnh này đã trên đường đi đến, và chúng ta sẽ thấy chúng trong những chương sau. Một số ít nhà vật lý đang tìm cách đưa lời giải cho công án quark, mà họ được cảm hứng, gợi mở ra những tư tưởng mới về tự tính của thực tại vật lý. 

Sự khám phá ra cấu trúc đối xứng trong thế giới hạt đã làm cho nhiều nhà vật lý nghĩ rằng, những cấu trúc đó phản ánh qui luật cơ bản của thiên nhiên. Trong năm mươi năm qua, con người đã nỗ lực để đi tìm mộ cái đối xứng uyên nguyên nhằm kết hợp mọi hạt đã biết và nhờ đó mà lý giải cơ cấu của vật chất. Mục đích này phản ánh một thái độ triết học đã được đề ra bởi các nhà Hy Lạp cổ đại và đã được quan tâm suốt nhiều thế kỷ. Tính đối xứng, cùng với hình học, đã đóng mội vai trò quan trọng trong khoa học, triết học và nghệ thuật Hy Lạp, nó đồng nghĩa với thiện mỹ, tương hòa và hoàn hảo. Cho nên những người theo phái Phythagoras xem những cơ cấu đối xứng là then chốt của mọi sự vật. Platon tin rằng nguyên tử của bốn yếu tố tạo nên dạng của mọi vật thể rắn và phần lớn các nhà thiên văn Hy Lạp nghĩ rằng các thiên thể vận động trong hình tròn vì vòng tròn là hình ảnh hình học có mức đối xứng cao nhất.

Thái độ của triết lý phương Đông về tính đối xứng là hoàn toàn ngược lại với thái độ triết lý Hy Lạp cổ đại. Các truyền thống đạo học Viễn Đông hay dùng cấu trúc đối xứng như một biểu tượng hay phương tiện thiền định. Ngoài ra, phép đối xứng xem ra không đóng một vai trò quan trọng gì trong triết lý của họ. Cũng như hình học,nó được cho rằng cũng chỉ do đầu óc tạo ra hơn là một tính chất của tự nhiên, vì thế không có tầm quan trọng cơ bản. Theo đó, nhiều nghệ thuật phương Đông thường chuộng tính bất đối xứng và hay tránh mọi qui định về hình thể. Các bức họa mang nặng tính thiền của Trung quốc hay tranh của Nhật thường được diễn tả bằng hướng một góc hay cách xếp đặt không theo qui luật của kiến trúc vườn Nhật Bản, minh họa rõ khía cạnh này của nghệ thuật Viễn Đông.

Hình như việc đi tìm kiếm một phép đối xứng cơ bản trong thế giới hạt là một phần của gia tài để lại của người Hy Lạp, điều này khong thể tương thích được với thế giới quan đang hình thành từ khoa học hiện đại. Sự nhấn mạnh về tính đối xứng, tuy thế không phải là khía cạnh duy nhất của vật lý hạt. Ngược lại với quan điểm đối xứng, luôn luôn có một trường phái tư tưởng động, họ không xem cấu trúc hạt là tính chất then chốt của tự nhiên, mà hiểu chúng chỉ là mặt xuất hiện của một thế giới tự nhiên năng động và của những tương tác trong thế giới đó. Hai chương còn lại sau đây sẽ trình bày những trường phái tư tưởng đó, trong những thập niên qua, đã hình thành những quan điểm khác hẳn về đối xứng và qui luật của tự nhiên, chúng hòa hợp với thế giới quan của nền vật lý hiện đại tới nay được biết và chúng cũng phù hợp một cách hoàn hảo với triết lý phương Đông. 

Chương 17 
CÁC MẪU HÌNH BIẾN DỊCH

Lý giải tính đối xứng trong thế giới hạt bằng mô hình động, tức là bằng cách mô tả sự tương tác giữa các hạt với nhau, đó là một trong những thách thức chủ yếu của vật lý ngày nay.

Cuối cùng thì vấn đề đặt ra là làm sao cùng một lúc mà nối kết cả thuyết lượng tử lẫn thuyết tương đối. Những cấu trúc hạt dường như phản ánh tính lượng tử của hạt, vì mẫu hình tương tự như thế đã xảy ra trong thế giới nguyên tử rồi. Thế nhưng trong vật lý hạt, chúng không thể được lý giải bằng mô hình sóng trong khuôn khổ thuyết lượng tử, vì năng lượng tham gia vào đây quá cao nên thuyết tương đối phải được áp dụng đến. Vì thế chỉ có một lý thuyết lượng tử - tương đối cho hạt là có hy vọng chuyên chở được tính đối xứng đã được quan sát.

Thuyết trường lượng tử là mô hình đầu tiên của loại này. Nó cho ta một sự mô tả xuất sắc về sự tương tác điện từ giữa electron và photon, nhưng nó không phù hợp lắm để mô tả loại tương tác mạnh. Khi các hạt của loại này ngày càng được phát hiện, nhà vật lý sớm nhận ra rằng thật khó lòng liên hệ mỗi một hạt đó với một truờng cơ bản, và khi thế giới hạt cho thấy rằng nó là hiện thân của tấm lưới dệt ngày càng phức tạp gồm toàn sự tương tác, thì nhà vật lý thấy phải tìm những mô hình khác để biểu diễn cho được thực tại động và luôn thay đổi này. Cái cần thiết là một mô hình toán học đủ sức mô tả ở dạng động một số lớn hình thái của cấu trúc hadron, đó là sự chuyển hóa lẫn nhau liên tục của chúng từ hạt này qua hạt khác, sự tương tác giữa chúng bằng cách hoán chuyển hạt, sự hình thành các trạng thái liên kết của hai hay nhiều hadron, và sự tự phân hủy để thành những liên hợp khác của hạt. Tất cả những tiến trình này, có lúc được gọi chung là phản ứng hạt, là tính chất chủ yếu của tương tác mạnh và phải được lưu ý trong một mô hình lượng tử tương đối của Hadron.

Khuôn khổ xem ra phù hợp nhất để mô tả hadron và tương tác của chúng được gọi là thuyết ma trận S. Cơ sở then chốt của nó, ma trận S, nguyên được Heisenberg đề xuất năm 1943 và được phát triển trong suốt hai thập kỷ qua, thành một cơ cấu toán học phức tạp, có thể xem là thích hợp nhất để mô tả tương tác mạnh. Ma trận S là tập hợp các xác suất của tất cả phản ứng có thể có với hadron. Tên của nó xuất phát từ điều mà toàn bộ phản ứng khả dĩ của hadron được xếp trong trận đồ vô tận mà nhà toán học gọi là ma trận. Chữ S đại diện cho tên nguyên là scattering matrix (ma trận phân tán), nó nói lên các tiến trình va chạm - hay phân tán, đó là phần đa số của phản ứng các hạt.

Tất nhiên, trong thực tế không ai quan tâm đến toàn bộ tập hợp của các tiến trình hadron, mà chỉ một ít phản ứng đặc biệt. Thành thử, không bao giờ ta xem xét toàn bộ ma trận S, mà chỉ một phần của nó, hay các yếu tố liên quan đến tiến trình đang xét. Những yếu tố này được biểu diễn tượng trưng bằng biểu đồ như hình sau đây, nói lên phản ứng đơn giản nhất và cũng chung nhất của hạt.

Hai hạt A và B chịu một lực va chạm để sinh ra hai hạt khác C, D. Tiến trình phức tạp hơn có thể chứa nhiều hạt hơn và được đại diện bởi các hình sau đây.

Cần nhấn mạnh rằng biểu đồ ma trận S rất khác với biểu đồ Feyman của lý thuyết trường. Nó không minh họa cơ chế cơ lý chi tiết của phản ứng mà chỉ định những hạt đầu tiên và cuối cùng. Thí dụ tiến trình cơ bản A+B = C+D có thể diễn tả trong lý thyết trường như một sự hoán chuyển của một hạt giả V (xem hình dưới), trong lúc trong thuyết ma trận S, tiến trình đó chỉ được vẽ bằng một vòng tròn mà không ghi rõ trong đó xảy ra những gì.

Hơn nữa biểu đồ ma trận S không hề là biểu đồ về không gian - thời gian, nó chỉ là sự biểu diễn tiêu biểu chung của phản ứng hạt. Những phản ứng này cũng không được giả định là xảy ra tại một điểm nhất định nào trong không gian - thời gian, mà chỉ được mô tả với trị số vận tốc (hay chính xác hơn, với trị số xung lượng) của các hạt đến và các hạt đi.

Tất nhiên ,điều đó có nghĩa là biểu đồ ma trận S không mang nhiều lượng thông tin như biểu đồ của Feyman. Mặt khác, thuyết ma trận S lại tránh được khó khăn xảy ra trong lý thuyết trường. Các hiệu ứng liên hợp của thuyết lượng tử và tương đối không cho phép ta xác định một cách chính xác sự tương tác giữa các hạt cho sẵn. Vì nguyên lý bất định, trạng thái bất định của vận tốc hạt sẽ tăng trong khu vực tương tác được qui định rõ ràng hơn, và vì thế trị số của động năng của nó cũng bất định hơn. Tới lúc nào đó thì năng lượng này đủ lớn để sinh ra hạt mới, theo thuyết tương đối, lúc đó người ta không còn chắc chắn liệu mình đang xét hạt nguyên tử nữa hay không. Vì thế, trong một thuyết bao gồm cả thuyết lượng tử và thuyết tương đối, người ta không thể chỉ định được vị trí của các hạt một cách rõ ràng. Nếu điều này vẫn cứ xảy ra như trong lý thuyết trường, thì người ta phải đối phó với những mâu thuẫn toán học, mà đó chính là khó khăn then chốt của mọi lý thuyết trường lượng tử. Thuyết ma trận S tránh khỏi khó khăn này bằng cách chỉ định xung lượng của hạt và chấp nhận sự nhất định về vị trí nơi đó phản ứng xảy ra.

Điều quan trọng của thuyết ma trận S là nhấn mạnh đến biến cố, chứ không quan tâm đến vật thể, không quan tâm chủ yếu về hạt mà về phản ứng của chúng. Sự dời chuyển đó từ hạt lên biến cố đều được cả hai thuyết lượng tử và tương đối đòi hỏi. Một mặt, thuyết lượng tử đã nói rõ một hạt cơ bản chỉ có thể được hiểu như là dạng xuất hiện của sự tương tác giữa các tiến trình đo lường khác nhau. Nó không phải là một vật thể độc lập mà là một sự xảy ra, một biến cố, nó nối những biến cố khác với nhau trong một cách thế đặc biệt. Hãy nghe Heisenberg nói:

Trong vật lý hiện đại, người ta không thể chia thế giới thành những nhóm vật thể mà thành những nhóm của sự liên hệ…Điều cần phân biệt là cách liên hệ, đây là yếu tố quan trọng nhất trong một số hiện tượng…Thế nên thế giới hiện ra như một tấm lưới dệt toàn những biến cố, trong đó có những mối liên hệ của nhiều cách thế khác nhau, xúc tác hay đan lẫn hay nối kết lẫn nhau và qua đó mà xác định toàn bộ tấm lưới.

Mặt khác, thuyết tương đối cũng buộc ta phải xem hạt trong tiến trình của không gian - thời gian : là một cấu trúc bốn chiều, phải xem là tiến trình hơn là vật thể. Giả thuyết ma trận S vì thế nối kết cả hai quan điểm này. Dùng phép toán học bốn chiều của thuyết tương đối, nó mô tả được tất cả tính chất của hadron theo nghĩa phản ứng (hay nói chính xác hơn theo nghĩa khả năng phản ứng) và nhờ thế mà tạo dựng một gạch nối chặt chẽ giữa hạt và tiến trình. Mỗi phản ứng của hạt đều nối hạt đó với những phản ứng khác và như thế mà xây dựng một mạng lưới của những quá trình.

Thí dụ, một neutron n có thể tham gia vào hai phản ứng theo sau nhau, bao gồm hai hạt khác nhau; phản ứng đầu tiên là một proton và một p -, và phản ứng thứ hai là một S - và một K +. Thế nên neutron đã nối kết hai phản ứng đó và hòa nhập chúng trong một tiến trình lớn hơn.

Mỗi một hạt đầu tiên hay cuối cùng của tiến trình vừa kể lại có thể tham gia trong những phản ứng khác; thí dụ proton có thể sinh ra từ một tương tác của một K+ và một l (xem b). Sau đó K+ của hình a lại có thể xem là nối với một K- và một po; p- với ba pionkhác nữa (xem hình trang 313).

Thế là neutron nguyên thủy có thể được xem là một phần tử của một mạng lưới biến cố, tất cả được mô tả trong ma trận S. Mối tương quan trong mạng lưới đó không thể xác được định một cách chắc chắn, chúng chỉ liên hệ với xác suất. Mỗi phản ứng có thể xảy ra với một xác suất nào đó, nó tùy thuộc vào năng lượng hiện diện và vào những đặc trưng của phản ứng và những xác suất này được nhiều yếu tố của ma trận S chỉ rõ.

Phép tính này cho phép ta xác định cấu trúc của một hadron trong một cách thế trước sau đều động. Thí dụ hạt neutron trong một mạng lưới này có thể xem là trạng thái liên kết của một proton và p, từ đó sinh ra; cũng là trạng thái liên kết của p- và một K+, trong đó nó tự hủy. Cả hai trạng thái liên kết này cũng như các cách khác đều có thể hình thành một neutron và vì thế mà ta có thể nói chúng là phần tử của một “cơ cấu” neutron. Cấu trúc của hadron vì thế không nên hiểu là một sự xếp đặt rõ rệt của những thành phần mà là được sinh ra bởi mọi hạt mà chúng có thể tương tác với nhau để tạo thành hadron đó. Thế nên proton có thể hiện hữu như là một cặp neutron - pion, cặp kaon - lambda, vân vân. Proton lại có thể tự hủy để chuyển thành những hạt khác khi có đầy đủ năng lượng. Những khuynh hướng của một hadron có thể hiện hữu trong những trạng thái khác nhau được biểu thị bằng xác suất xảy ra của những phản ứng liên hệ, tất cả những thứ đó có thể xem là các khía cạnh của cơ cấu nội tại của hadron.

Khi xác định cấu trúc của một hadron bằng khuynh hướng của nó đối với các phản ứng, lý thuyết ma trận S đã cho khái niệm cơ cấu một nôi dung động chủ yếu. Đồng thời, nội dung này của cấu trúc cũng phù hợp một cách toàn hảo với các yếu tố thực nghiệm. Cứ mỗi khi hadron bị vỡ ra trong các quá trình va chạm cao năng lượng, thì chúng tự phân hủy thành những liên kết của hadron khác; thế nên có thể nói là chúng có khả năng chứa những mối liên kết đó. Một trong những hạt sinh ra từ va chạm đó, đến phiên mình lại chịu nhiều phản ứng, xây dựng nên cả một mạng lưới biến cố có thể chụp lại trong buồng đo. Hình bên dưới và các hình trong chương 15 là những thí dụ của một loạt những phản ứng đó:

Trong một thí nghiệm, mặc dù một mạng lưới sinh ra do sự ngẫu nhiên, thế nhưng nó cũng có cấu trúc theo qui luật nhất định. Qui luật này chính là luật bảo toàn đã được nói tới; các phản ứng chỉ có thể khả dĩ khi các trị số lượng tử đã định được bảo toàn. Trước hết, tổng số năng lượng phải được bảo toàn trong mỗi phản ứng. Điều này có nghĩa là mỗi nhóm hạt nhất định chỉ có thể sinh ra từ một phản ứng nếu năng lượng tác động vào đủ cao để tạo ra khối lượng đòi hỏi. Hơn thế nữa, nhóm hạt sinh ra phải mang đúng tổng trị số lượng tử đã được mang lại trong phản ứng với các hạt ban đầu. Thí dụ, một proton và một p- mang một điện tích tổng thể bằng không, có thể vỡ ra trong va chạm và sinh ra một neutron và một po ,  chúng không thể sinh ra neutron và một p+ vì cặp sau này sẽ có điện tích là +1.

Thế nên, phản ứng hadron đại diện một dòng chảy năng lượng, trong đó hạt được hình thành và phân hủy, nhưng năng lượng hầu như được chảy trong một kênh có đặc trưng là những trị số lượng tử được bảo toàn trong tương tác mạnh. Trong thuyết ma trận S, khái niệm kênh phản ứng  là cơ bản hơn khái niệm hạt. Khái niệm đó được định nghĩa là một nhóm trị số lượng tử, nó có thể phù hợp với một số khác nhau hadron va có khi chỉ cho một hadron duy nhất. Nhóm hadron nào sẽ chảy xuyên qua kênh đó, đó là vấn đề của xác suất, nhưng chủ yếu nó tùy thuộc vào năng lượng dành cho tiến trình. Thí dụ hình trang sau chỉ sự tương tác giữa một proton và một p- trong đó một neutron được sinh ra ở đoạn giữa. Thế là kênh phản ứng được xây dựng nên trước hết bằng hai hadron, sau bằng một hadron duy nhất và cuối cùng một cặp hadron.

Nếu có nhiều năng lượng hơn thì kênh đó có thể được làm thành từ một cặp l - K0, một cặp S- - K+ và từ những liên hợp khác.

Khái niệm về những kênh phản ứng lại càng phù hợp hơn để làm việc với những quá trình cộng hưởng, đó là những hạt hadron sống cực ngắn, chúng là đặc trưng của tất cả mọi tương tác mạnh.

Chúng sống ngắn đến mức các nhà vật lý mới đầu ngại xem chúng là những hạt và ngày nay việc lý giải tính chất của chúng vẫn là một trong những trách nhiệm chính của ngành vật lý thực nghiệm cao năng lượng. Cộng hưởng xảy ra trong các cuộc va chạm hadron và tự phân hủy hầu như ngay sau khi chúng sinh ra. Chúng không thể được thấy trong buồng đo, nhưng chúng có thể được phát hiện vì một tính chất rất đặc biệt xác suất phản ứng. Xác suất để cho hai hadron đang di động phản ứng được với nhau - tức là tương tác lên nhau - tuỳ thuộc vào năng lượng chứa sẵn trong sự va chạm. nếu trị số năng lượng này biến đổi thì xác suất cũng thay đổi theo; năng lượng tăng thì xác suất có thể tăng hay giảm, tùy theo chi tiết của phản ứng. Tuy thế, người ta quan sát rằng tại một trị số nhất định của năng lượng thì xác suất phản ứng gia tăng rõ rệt, một phản ứng dễ xảy ra tại trị số này hơn bất kỳ tại trị số năng lượng khác. Sự tăng vọt này của xác suất liên hệ với sự hình thành của một đời sống ngắn tạm bợ của hadron với một khối lượng tương tự cuả năng lượng tại nơi tăng vọt xác suất.

Lý do mà những giai đoạn ngắn ngủi này của hadron được gọi tên là resonance (cộng hưởng) xuất phát từ sự tương đồng với hiện tượng cộng hưởng trong sự dao động. Thí dụ trong âm thanh, không khí trong một lỗ trống thường dội lại một cách yếu ớt với âm thanh đến từ bên ngoài, nhưng nó sẽ bắt đầu cộng hưởng hay doa động mạnh mẽ khi sóng âm thanh đạt đến một tần số nhất định được gọi là tần số cộng hưởng. Kênh của phản ứng hadron cũng có thể so sánh như một lỗ trống cộng hưởng, vì năng lượng của hạt hadron đang di động liên quan đến tần số của sóng xác suất liên hệ. Khi năng lượng này, hay tần số, đạt tới một trị số nhất định thì kênh này bắt đầu cộng hưởng; sự dao động của sóng xác suất bỗng nhiên trở nên mãnh liệt và sinh ra sự tăng vọt trong xác suất phản ứng. Phần lớn kênh phản ứng đều có vài năng lượng cộng hưởng, mỗi trị số của chúng liên hệ với khối lượng của một hadron tạm bợ sống ngắn ngủi, chúng sẽ hình thành khi năng lượng của những hạt đang va chạm đó đạt tới trị số cộng hưởng.

Trong khuôn khổ của thuyết ma trận S, vấn đề liệu ta có thể gọi những cộng hưởng là hạt hay không, không được đặt ra. Tất cả mọi hạt đều được xem là giai đoạn chuyển tiếp cả trong một tấm lưới của phản ứng, và việc các resonance tồn tại rất ngắn so với các hadron khác không hề làm cho chúng có sự khác biệt căn bản với các hạt khác. Thực tế là từ resonance (cộng hưởng) là một từ rất thích hợp. Nó được áp dụng cho cả hai trường hợp, cho kênh phản ứng và cho hadron được sinh ra trong hiện tượng này, nên nó chỉ rõ mối liên hệ chặt chẽ giữa hạt và phản ứng. Một resonance là một hạt, không phải là một vật thể. Tốt hơn ta gọi nó là một biến cố, một sự việc xảy ra.

Sự mô tả này của hadron trong nền vật lý hạt nhắc ta lại những lời của D.T.Suzuki nói cuối chương 13: “ Phật tử xem vật thể là một tiến trình chứ không phải là một vật hay một chất”. Điều mà Phật tử đã nhận ra bằng kinh nghiệm đạo học của họ về thế giới tự nhiên nay đã được phát hiện lại bằng thực nghiệm và bằng lý thuyết toán học của khoa học hiện đại.

Nhằm mô tả tất cả hadron trong giai đoạn chuyển tiếp của chúng trong một hệ thống lưới đầy phản ứng, ta phải quan tâm đúng mức đến các lực mà xuyên qua đó chúng tương tác với nhau. Đó là những lực của tương tác mạnh, chúng tách - hay tung ra xa - các hadron đang lao vùn vụt, giải thể chúng rồi lại xếp chúng theo những khuôn mẫu khác nhau, rồi lại kết chúng lại để đạt tới trạng thái liên kết chuyển tiếp. Trong thuyết ma trận S cũng như trong lý thuyết trường, lực tương tác có liên quan tới hạt, thế nhưng khái niệm của hạt giả không được sử dụng. Thay vào đó mối liên hệ giữa lực và hạt được đặt trên tính chất đặc biệt của ma trận S, được gọi là “crossing” (tác động giao nhau). Nhằm minh họa tính chất này, hãy xem hình trang 320 về tương tác giữa một proton và một p-.

Nếu được quay 90  và ta giữ qui ước như cũ (xem chương 12), nhưng mũi tên hướng xuống chỉ các đối hạt, thì biểu đồ mới sẽ biểu diễn một phản ứng giữa một đối hạt antiproton (`p) và một proton (p), t? đ? sinh ra một cặp pion, p+ là đối hạt của p- trong phản ứng nguyên thủy.

Bây giờ, tính chất chất của ma trận S dựa trên thực tế là hai tiến trình kể trên được mô tả chỉ bằng một yếu tố của ma trận S. Điều đó có nghĩa là hai biểu đồ trên chỉ đại diện hai khía cạnh, hay hai kênh của một phản ứng duy nhất. Nhà vật lý nay đã quen đổi từ kênh này qua kênh kia trong bài toán của mình, và thay vì quay biểu đồ, họ chỉ việc đọc từ dưới lên trên hay từ trái qua phải và gọi chúng là kênh trục dọc hay kênh ngang. Thế nên phản ứng trong thí dụ chúng ta được đọc trong kên dọc là p + p - đ p + p+, trong kên ngang là `p + p đ p- + p+

Mối liên hệ giữa lực và hạt được thiết lập thông qua giai đoạn chuyển tiếp trong hai kênh. Trong kênh dọc của thí dụ này, proton và p - có thể tạo nên một neutron chuyển tiếp, trong lúc đó, ở kênh ngang một pion trung gian p 0 có thể xuất hiện.

Pion trung gian trong giai đoạn chuyển tiếp của kênh ngang này có thể được xem là biểu trưng của lực, lực đó tác động trong kênh dọc, nối proton và p -  với nhau để tạo thành neutron. Thế nên hai kênh này đều được cần đến để liên kết lực và hạt với nhau, cái xuất hiện dưới dạng lực ở một kênh này lại là biểu trưng cho hạt chuyển tiếp ở một kênh kia.

Mặc dù tương đối dễ dàng khi đổi từ kênh này qua kênh kia về mặt toán học, nhưng lại hơi khó - nếu không muốn nói là không thể - có một hình ảnh trực tiếp về tình trạng này. Điều đó là vì crossing (tác động giao nhau) chủ yếu là một phương thức xuất phát từ hệ bốn chiều của thuyết tương đối và vì thế mà rất khó có hình ảnh về nó. Một tình trạng tương tự xảy ra trong lý thuyết trường là nơi mà lực tương tác được xem là sự hoán chuyển các hạt giả. Thực tế là, biểu đồ trình bày các pion chuyển tiếp trong kênh ngang nhắc ta rất nhiều đến các biểu đồ Feyman cũng vẽ nên sự hoán chuyển hạt và ta có thể nói đơn giản, rằng proton và p - đã tương tác “thông qua một hoán chuyển một p 0”. Những chữ này được nhà vật lý sử dụng, nhưng họ không mô tả hết tình trạng này. Một sự mô tả hợp lý chỉ có thể có được bằng cách trình bày kênh dọc và kênh ngang, tức là phải chịu một khái niệm trừu tượng mà phần lớn chúng ta không tưởng tượng ra được.

Mặc dù có hình thái khác nhau, nội dung chung của một lực tương tác trong thuyết ma trận S rất giống với lực trong lý thuyết trường. Trong cả hai lý thuyết thì lực biểu trưng cho hạt mà khối lượng của hạt nói lên sức mạnh của lực (xem chương 15) và trong cả hai thuyết chúng được nhận ra là tính chất nội tại của hạt đang tương tác; chúng phản ánh cấu trúc của đám mây hạt giả trong lý thuyết trường và trong thuyết ma trận S thì chúng được sinh ra ở trạng thái liên kết của hạt tương tác. Sự song hành với quan điểm phương Đông về lực đã được bàn đến, sự song hành này được áp dụng cho cả hai thuyết. Hơn thế nữa, quan điểm về lực tương tác đưa đến một kết luận quan trọng rằng tất cả các hạt được biết phải có một cấu trúc nội tại nào đó, vì chỉ như thế mà bị phát hiện. Hãy nghe những lời của Geoffrey Chew, một trong những kiến trúc sư chính của thuyết ma trận S:

Một hạt cơ bản đích thực - tức là không hề còn có một cơ cấu nội tại nào cả - thì không thể là đối tượng của một lực nào, lực đó cho phép chúng ta phát hiện sự hiện hữu của nó. Chỉ duy việc biết đến sự hiện hữu của một hạt là đã nói được rằng hạt đó phải có một cơ cấu nội tại!.

Một ưu điểm đặc biệt của dạng ma trận S là nó có khả năng mô tả sự hoán chuyển của toàn bộ cả họ hadron. Như đã nói trong chương trước, hầu như tất cả hadron đều nằm trong những chuỗi mà các phần tử của chúng có những tính chất đồng nhất với nhau, chỉ trừ khối lượng và spin của chúng. Có một mô hình được Tullion Reege đề xuất đầu tiên, nó giúp ta xem chuỗi này chỉ là một hạt hadron đơn nhưng lại hiện hữu ở những trạng thái kích thích khác nhau. Trong những năm gần đây, người ta đã đưa mô hình Reege vào trong khuôn khổ ma trận S và được xem là bước đầu tiến tới một lý giải động cho cấu trúc hạt.

Khuôn khổ của ma trận S giờ đây đã đủ khả năng mô tả cấu trúc của hadron, các lực tương tác giữa chúng, và một số cấu trúc của chúng được xem là một phần không thể tách rời của một mạng lưới đầy những phản ứng, trong một cách nhìn động. Thách thức chính yếu đặt ra cho thuyết ma trận S là sử dụng cách mô tả động này mà lý giải được tính đối xứng, là tính chất đã dẫn đến các cấu trúc hadron và luật bảo toàn đã nói trong chương trước. Trong thuyết như thế, tính chất đối xứng của hadron sẽ phản ánh lại trong cơ cấu toán học của ma trận S dưới dạng là ma trận đó chỉ chứa những yếu tố liên quan đến những phản ứng mà luật bảo toàn cho phép. Các luật bảo toàn này sẽ không còn có tính chất thực nghiệm nữa mà là hệ quả của cơ cấu ma trận S và đó là một hệ quả của tính chất động của hadron.

Để đạt được mục đích đầy tham vọng này, nhà vật lý phải giả định nhiều nguyên lý chung, nhằm hạn chế bớt các khả năng xây dựng yếu tố của ma trận S và nhờ đó mà cho ma trận S một cấu trúc xác định. Tới nay thì có ba nguyên lý chung đã được hình thành.

Nguyên lý chung thứ nhất bắt nguồn từ thuyết tương đối và với kinh nghiệm thuộc về thế giới vĩ mô không gian - thời gian. Nguyên lý đó nói rằng xác suất phản ứng (tức là các yếu tố của ma trận S) phải độc lập với sự xếp đặt thiết bị thí nghiệm trong không gian - thời gian, độc lập với hướng của chúng trong không gian, và độc lập với trạng thái di chuyển của người quan sát. Như đã nói trong chương trước, sự độc lập của phản ứng hạt đối với chiều hướng cũng như đối với sự xếp đặt trong không gian - thời gian đã sinh ra luật bảo toàn về độ quay, xung lượng và năng lượng chứa trong phản ứng. Những đối xứng này là then chốt trong công trình khoa học của chúng ta. Nếu kết quả các thí nghiệm mà thay đổi tùy theo không gian và thời gian thực hiện thì không thể có khoa học dưới hình thức như hiện nay. Sau hết, đòi hỏi cuối là kết quả thí nghiệm không được tùy thuộc nơi trạng thái vận động của người quan sát, đó là nguyên lý tương đối, là cơ sở của thuyết tương đối.

Nguyên lý chung thứ hai được đề xuất từ thuyết lượng tử. Nó cho rằng, kết quả của một phản ứng hạt chỉ có thể tiên đoán bằng xác suất, và hơn thế nữa, tổng số xác suất của tất cả mọi khả năng, kể cả khả năng không có sự tương tác nào giữa các hạt, tổng số đó phải bằng một. Nói cách khác, chúng ta chắc chắn một điều rằng, các hạt hoặc sẽ phản ứng với nhau, hoặc không phản ứng với nhau. Câu nói nghe qua tầm thường này thật ra là một nguyên lý đầy uy lực, mang tên Unitarity (đơn nhất), nó là tác nhân hạn chế một cách nghiêm khắc những khả năng hình thành các yếu tố của ma trận S.

Nguyên lý chung thứ ba và cuối cùng là liên hệ đến khái niệm nguyên nhân kết quả và được gọi là nguyên lý nhân quả. Nó chỉ định rằng, năng lượng và xung lượng chỉ được chuyển hóa trong không gian thông qua hạt, rằng sự chuyển dịch này xảy ra trong cách mà một hạt có thể được hình thành trong một phản ứng và phân hủy trong một phản ứng khác, nếu phản ứng sau xảy ra sau phản ứng đầu. Biểu thức toán học của nguyên lý nhân quả làm cho ma trận S phụ thuộc một cách liên tục vào năng lượng và xung lượng của hạt tham gia trong phản ứng, chỉ trừ khi các trị số đó (của năng lượng và xung lượng) đạt đến khả năng hình thành hạt mới. Tại những trị số này thì cấu trúc toán học của S thay đổi thình lình; nó tạo nên những điểm mà nhà toán học gọi là Singularity (điểm kỳ dị). Mỗi kênh phản ứng đều chứa nhiều điểm kỳ dị, đó chính là nơi có nhiều trị số của năng lượng và xung lượng trong kênh, nơi đó hạt mới có thể hình thành. Những năng lượng cộng hưởng đã nói trên là thí dụ cho những trị số này.

Việc ma trận S có những điểm kỳ dị là một hệ quả của nguyên lý nhân quả, nhưng nó không xác định được vị trí của các điểm kỳ dị. Trị số của năng lượng xung lượng, nơi đó hạt được hình thành, là khác nhau trong các kênh khác nhau và phụ thuộc nơi khối lượng và các tính chất khác của hạt được hình thành. Thế nên vị trí các điểm kỳ dị phản ánh tính chất của những hạt đó và vì tất cả hadron đều có thể sinh ra trong các phản ứng hạt, các điểm kỳ dị trong ma trận S phản ánh lại tất cả cấu trúc và tính đối xứng của hadron.

Thành thử, mục đích trung tâm của thuyết ma trận S là suy ra một cơ cấu kỳ dị của ma trận S từ những nguyên lý chung. Tới nay người ta chưa thiết lập được mô hình toán học thỏa ứng được tất cả ba nguyên lý đó, và rất có thể là ba nguyên lý đó đủ để xác định một cách rõ rệt tất cả tính chất của ma trận S - tức là tất cả tính chất của hadron (giả định này được gọi là giả thiết Boostrap sẽ được bàn tới trong chương 18). Nếu đúng như vậy thì hệ quả triết học của một lý thuyết như thế sẽ rất sâu sắc. Tất cả ba nguyên lý chung nói trên đều liên hệ với phương pháp của ta về việc quan sát và đo lường, tức là liên hệ với khuôn khổ của khoa học. Nếu chúng đầy đủ để xác định cơ cấu của hadron thì có nghĩa là cơ cấu cơ bản của thế giới vật lý cuối cùng đã được xác định bằng cách chúng ta nhìn thế giới đó như thế nào. Mỗi một sự thay đổi cơ bản của ta trong cách quan sát sẽ dẫn đến sự thay đổi trong các nguyên lý chung đó và nó lại đưa đến sự thay đổi trong cơ cấu ma trận S và như thế sẽ dẫn đến một cơ cấu khác của hadron.

Một lý thuyết như thế về các hạt hạ nguyên tử phản ánh việc không thể tách rời nhà quan sát khoa học với hiện tượng bị quan sát, điều này đã được bàn tới trong thuyết lượng tử, nhưng ở đây nói một cách khẳng định nhất. Cuối cùng, nó dẫn đến điều là, cơ cấu và hiện tượng mà ta quan sát trong thiên nhiên không gì khác hơn chính là biểu hiện của tư duy đo lường và phân loại của chúng ta.

Đây chính là một trong những pháp môn cơ bản nhất của triết học phương Đông. Nền đạo học phương Đông luôn luôn chỉ cho ta thấy rằng, sự vật và biến cố mà ta cảm nhận chính là sự sáng tạo của tâm, chúng xuất phát từ một dạng ý thức đặc biệt rồi lại tan đi một khi tâm đó biến đổi. Ấn Độ giáo quả quyết rằng tất cả sắc thể và cấu trúc quanh ta đều được hình thành bởi một tâm thức đang chịu sự tác động của ảo giác và khuynh hướng cho chúng một tầm quan trọng sâu xa chính là ảo giác căn bản của con người. Phật giáo gọi sự ảo giác này là vô minh và xem đó là một dạng của tâm ô nhiễm. Hãy nghe lời của Mã Minh:

Khi không nhận rõ sự nhất thể (Chân Như) thì vô minh và phân biệt liền hiện, và tất cả mọi dạng của tâm ô nhiễm liền phát…Tất cả mọi hiện tượng trong thế gian đều do vô minh vọng tâm của chúng sinh mà tồn tại, nên tất cả các pháp đều không có thật thể.

Đó cũng là quan niệm luôn luôn được nêu lên của Duy Thức tông Phật giáo, trong đó mọi sắc thể mà ta cảm nhận chỉ là thức; là phản chiếu, hay bóng dáng của tâm:

Vô số sự vật xuất phát từ tâm, do trí phân biệt qui định…Người ta xem sự vật này là thế gian bên ngoài… Mọi điều xuất hiện bên ngoài không hề hiện hữu thật có, đó chỉ là tâm hiện ra muôn ngàn sai khác; thành thân thành vật sở hữu và mọi thứ - tất cả những thứ đó, ta nói, không gì khác hơn là thức.

Trong vật lý hạt, việc suy ra được một cấu trúc hadron từ những nguyên lý chung của thuyết ma trận S là một bài toán lâu dài và khó khăn và đến nay cũng mới chỉ đi được từng bước nhỏ cho thành tựu đó.

Cũng không phải vì thế mà ta coi nhẹ khả năng một ngày kia, tính chất của các hạt hạ nguyên tử sẽ được suy ra từ những nguyên lý chung, tức là chúng sẽ được xem là phụ thuộc vào khuôn khổ khoa học của chúng ta. Thật là thú vị khi cho rằng nó có thể trở thành tính chất chung của nền vật lý hạt, nó sẽ xuất hiện trong các lý thuyết tương lai nói về tương tác điện từ, tương tác yếu và tương tác trọng trường. Nếu điều này được xác định là đúng thì vật lý hiện đại phải đi con đường hướng tới sự nhất trí với minh triết phương Đông cho rằng, thế giới lý tính chẳng qua là ảo giác, chỉ là thức.

Thuyết ma trận S đến rất gần với tư tưởng phương Đông không phải chỉ trong kết luận cuối cùng của nó, mà cũng trong quan điểm chung về sự vật. Nó mô tả thế giới của những hạt hạ nguyên tử như một mạng lưới động gồm toàn biến cố và nhấn mạnh đến sự thay đổi và chuyển hóa hơn là đến cấu trúc cơ bản hay những đơn vị nào đó. Tại phương Đông, sự nhấn mạnh này đặc biệt rõ nét trong tư tưởng Phật giáo, trong đó mọi vật được đều xem là động, vô thường và chỉ là ảo giác. Thế nên S.Radhakrishnan viết :

Sao ta lại nghĩ về sự vật, thay vì nghĩ về tiến trình trong dòng chảy tuyệt đối này được? Bằng cách nhắm mắt lại trước những biến cố nối tiếp lẫn nhau. Đó là một thái độ giả tạo nhằm cắt dòng chảy của sự biến đổi ra từng miếng và gọi chúng là sự vật… Khi đã biết sự thật của vật thể, ta sẽ thấy rằng thật vô lý khi tôn thờ các sản phẩm cô lập của dòng chảy không ngừng nghỉ của sự biến hóa, làm như chúng là vĩnh cửu và đích thực. Đời sống không phải là vật thể hay là dạng của vật thể mà là một sự vận động liên tục hay chuyển hóa.

Cả hai, nền vật lý hiện đại và đạo học phương Đông đều nhìn nhận tất cả mọi hiện tượng của thế giới đầy đổi thay và biến hóa này đều tương quan lẫn nhau trong nguyên lý động. Ấn Độ giáo và Phật giáo xem sự tương quan này là qui luật vũ trụ, luật của Nghiệp, nhìn chung họ không mấy quan tâm đến cấu trúc đặc trưng nào của mạng lưới hiện tượng vĩ mô. Mặt khác, triết lý Trung Quốc cũng nhấn mạnh đến tính vận động và thay đổi, đã đề ra một khái niệm của cấu trúc vận hành, chúng liên tục sinh thành và lại hoại diệt trong dòng chảy vũ trụ, của Đạo. Trong Kinh Dịch (xem chương 8), những cấu trúc này được xếp đặt trong một hệ thống của mẫu hình tượng trưng, được gọi là Bát quái.

Nguyên lý cơ bản của cấu trúc trong Kinh Dịch là sự tương tác giữa hai cực Âm Dương. Dương được biểu thị bằng một vạch liền (-), âm bằng một vạch đứt (- -) và toàn bộ hệ thống bát quái được xây dựng trên hai vạch này. Khi xếp chúng trong từng cặp thì ta có bốn loại hình sau đây (ảnh trong sách) và nếu thêm một vạch thứ ba nữa thì ta có tám “quẻ” như sau: (ảnh minh hoạ trong sách).

Trong thời cổ đại Trung quốc thì tam quẻ được xem là đại diện cho tất cả mọi tình hình trong vũ trụ hay nhân sinh. Chúng được mang những tên phản ánh những tính chất cơ bản đó, như Càn (tính mạnh),, Khôn (tính thuận), Chấn (tính động)…và chúng cũng được liên hệ với nhiều hình tượng xuất phát từ thiên nhiên hay từ đời sống xã hội. Thí dụ chúng tượng trưng cho trời (Càn), đất (Khôn), tiếng sấm (Chấn), nước (Khảm)… cũng như trong gia đình gồm có cha (Càn), mẹ (Khôn), ba con trai (Cấn, Khảm, Chấn), ba con gái (Đoài, Ly, Tốn). Hơn thế nữa chúng liên hệ với phương hướng trời đất và bốn mùa trong năm và được xếp như sau: (hình trong sách).

Trong cách xếp đặt này, tám quẻ được xếp quanh một vòng trong trong trật tự tự nhiên, trong đó chúng đã được hình thành, bắt đầu từ đỉnh (là nơi người Trung Quốc luôn luôn xem là hướng nam) và sau đó đặt bốn quẻ đầu lên phía bên trái vòng tròn, rồi bốn quẻ sau phía bên phải. Cách xếp đặt này cho thấy một mức độ đối xứng cao, các quẻ đối diện trên vòng tròn có sự hoán chuyển của hai vạch âm dương.

Nhằm tăng thêm số lượng khả năng phối hợp, tám quẻ lại được liên kết với nhau từng cặp bằng cách chồng lên lẫn nhau. Theo cách này sáu mươi bốn quẻ được sinh ra, mỗi quẻ gồm sáu vạch liền hay đứt. Những quẻ này cũng được xếp trong những cấu trúc khác nhau, trong đó thì hai cách xếp đặt dưới đây là phổ biến nhất; đó là một hình vuông với tám quẻ trong mỗi cạnh, hay một hình tròn cho thấy tính đối xứng như tám quẻ bát quái nói trên.

Sáu mươi bốn quẻ là những mẫu hình nguyên thủy vũ trụ, trên đó người ta sử dụng Kinh Dịch như một cuốn sách bói toán.

Về ý nghĩa của mỗi quẻ, người ta lấy hai quẻ nhỏ làm cơ sở để tính toán. Thí dụ, khi quẻ Chấn (vận động) nằm trên quẻ Khôn (tính thuận) thì được hiểu là vận động gặp sự thuận hòa và sinh ra quẻ Dự, tượng trưng sự hòa vui.

Quẻ Tấn cho ta một thí dụ khác, gồm có quẻ Ly phía trên, quẻ Khôn phía dưới được diễn tả là mặt trời mọc ở trên đất, dấu hiệu của Tấn, “sáng tỏ thịnh lớn”.

Trong Kinh Dịch, các quẻ ba vạch hay sáu vạch đại diện cho cấu trúc của Đạo, chúng được sinh ra thông qua sự tương tác động của âm - dương, chúng được phản ánh trong mọi tình huống của vũ trụ và con người. Tuy thế những tình huống này không được xem là tĩnh, mà là một giai đoạn trong dòng chảy liên tục và biến động. Đó là tư tưởng cơ bản của Kinh Dịch. Tất cả mọi sự vật và tình huống trong thế giới đều đang thay đổi biến hóa, các biểu tượng của chúng là các quẻ cũng thế. Chúng đang vận động liên tục; cái này biến hóa thành cái kia, vạch liền bị kéo dãn ra và vỡ thành hai vạch đứt, vạch đứt tiến lại gần nhau và kết dính với nhau.

Vì nội dung của các cấu trúc động, được hình thành do thay đổi và biến hóa, trong tư tưởng phương Đông, Kinh Dịch có lẽ là sự tương đồng gần nhất với thuyết ma trận S. Trong cả hai hệ thống, người ta nhấn mạnh tính chất tiến trình hơn tính chất vật thể. Trong thuyết ma trận S, tiến trình này là phản ứng hạt lý giải mọi hiện tượng thế giới hadron. Trong Kinh Dịch, tiến trình cơ bản là biến dịch và được xem là then chốt để hiểu mọi hiện tượng thiên nhiên:

Biến dịch là điều làm thánh nhân đạt tới mọi điều sâu thẳm và nắm được hạt nhân của mọi sự.

Những biến dịch này không phải được xem là qui luật cơ bản được áp đặt lên thế giới vật lý, mà đúng hơn - dùng chữ của Hellmut Wihelm - là “một khuynh hướng nội tại, dựa trên đó mà sự phát triển xuất hiện một cách tự nhiên và hồn nhiên”. Điều đó cũng có thể nói cho sự thay đổi trong thế giới hạt. Cũng thế, chúng phản ánh khuynh hướng nội tại của hạt, chúng được diễn tả trong thuyết ma trận S bằng những xác suất phản ứng.

Những thay đổi trong thế giới của hadron cho phép xuất hiện cấu trúc và mẫu hình đối xứng, chúng được biểu hiện bằng các kênh phản ứng. Cấu trúc cũng như tính đối xứng không nên được xem là tính chất cơ bản của hadron, mà cần xem chúng là hệ quả của tính chất động của hạt, đó là hệ quả của khuynh hướng sẵn sàng thay đổi và biến hóa của chúng.

Trong Kinh Dịch cũng thế, chính sự biến hóa sinh ra cấu trúc, sinh ra các quẻ. Như những kênh phản ứng, các hình ảnh tượng trưng này đại diện các cách thế thay đổi. Cũng như năng lượng chạy xuyên qua kênh phản ứng thì sự biến dịch chạy xuyên qua các vạch của quẻ:

Dịch là một cuốn sách, 
Ta phải biết đến nó 
Đạo biến dịch vĩnh viễn 
Vận hành không ngừng nghỉ, 
Chảy qua sáu khoảng trống; 
Xuống lên không nhất định 
Mềm cứng chuyển lẫn nhau 
Không theo khuôn khổ nào, 
Chỉ “Dịch” đang vận hành.

Trong quan điểm Trung quốc, tất cả mọi sự và hiện tượng quanh ta xuất phát từ những mẫu hình biến dịch và được đại diện bởi các vạch trong quẻ. Thế nên sự vật trong thế giới vật lý không được xem là tĩnh tại, độc lập mà chỉ là giai đoạn chuyển tiếp trong tiến trình của vũ trụ, tiến trình đó chính là Đạo:

Đạo biến dịch và vận động. Thế nên các vạch được gọi là vạch thay đổi (hào). Hào có từng bậc, vì thế chúng đại diện cho sự vật.

Nhưng trong thế giới hạt, các cấu trúc được sinh ra bởi sự biến dịch có thể xếp vào nhiều mô hình đối xứng khác nhau, như dạng bát quái được tạo bởi tám quẻ, trong đó các quẻ đối ứng gồm các vạch âm dương hoán chuyển lẫn nhau. Cấu trúc này thậm chí hơi giống với hình bát giác Menson được thảo luận trong chương trước, trong đó hạt và đối hạt antiparticle nằm ở vị trí đối xứng.

Tuy thế, điều quan trọng không phải là sự giống nhau tình cờ này mà điều thực tế là cả vật lý hiện đại lẫn tư tưởng cổ đại Trung quốc xem sự thay đổi và biến hóa là khía cạnh nguyên thủy của thiên nhiên và xem cấu trúc hay sự đối xứng được sự biến dịch sinh ra chỉ là phụ thuộc. Khi dẫn giải về bản dịch Kinh Dịch của mình, Richard Wilhelm xem ý niệm này là tư tưởng cơ bản của Kinh Dịch:

Tám quẻ…đựoc xem như trong một tình trạng sẵn sàng thay đổi, quẻ này biến hóa thành quẻ kia, biến từ một hiện tượng này qua một hiện tượng khác, liên tục trong thế giới lý tính. Nơi đây ta có tư tưởng cơ bản của kinh Dịch. Tám quẻ là tám hình ảnh tượng trưng, đại diện cho giai đoạn chuyển đổi; đó là những hình ảnh liên tục chịu sự biến đổi. Đừng chú ý đến sự vật đang ở trong giai đoạn đó - điều mà tại phương Tây hay xảy ra - mà hãy chú ý sự vận động của chúngtrong lúc biến dịch. Vì thế mà tám quẻ không đại diện cho sự vật mà chúng đại diện cho khuynh hướng vận động [10]. 

Xem tiếp

Các thông tin cùng loại này
» BÀN TAY ÁNH SÁNG (2017-11-18 09:53:53)
» Phạm Võng Kinh Tinh Giải T1 (2017-11-13 16:56:46)
» Ngũ giới Đạo thành người (2017-04-06 05:02:34)
» Hành trình TOTHA 2016 (2017-04-06 04:30:03)
» Hành trình TOTHA 2015 (2017-11-17 12:18:16)
» Ngũ giới theo góc nhìn khoa học Tập 1 (2018-03-18 11:59:38)
» Hành trình TOTHA 2014 (2017-11-17 16:32:27)
» Kỷ yếu cùng nhau tu học 2013 (2013-09-19 15:19:17)
» Những Bí Ẩn Của Cuộc Đời (2011-10-16 17:06:12)
» Nhà tiên tri Edgar Cayce (2011-10-16 16:46:10)
» LƯỢC SỬ THỜI GIAN (2017-11-22 11:55:40)
» ĐẠO CỦA VẬT LÝ (2011-01-15 19:50:17)
» ĐỜI SỐNG SAU KHI CHẾT (2011-01-15 01:01:59)
» Hành Trình Về Phương Đông (2011-01-14 16:40:56)
» Trở Về Từ Cõi Sáng (2011-01-13 21:57:51)
» TỬ THƯ TÂY TẠNG (2011-01-13 21:06:23)
» Du hành qua các vùng tâm thức (2010-12-31 00:56:18)
» Kỷ yếu Hội thảo Khoa học thực nghiệm Năng lượng Tâm Thức 18/12/2010 (2010-12-30 17:04:04)
  1  
 

CÔNG TY KHOA HỌC NĂNG LƯỢNG TÂM THỨC TOTHA
245 Trịnh Đình Trọng, P.Hòa Thạnh, Q.Tân Phú, TP.HCM, VN - ĐT0909777929 - 0908883380 - 0909631630 - 0914359159 - Email:   phapluantotha@gmail.com

Copright 2009 www.totha.vn,
All rights reserved

Lượt truy cập: 19511927
Đang online : 396